The logically equivalent preposition of $p \Leftrightarrow q$ is
$\left( {p \Rightarrow q} \right) \wedge \left( {q \Rightarrow p} \right)$
$p \wedge q$
$\left( {p \wedge q} \right) \vee \left( {q \Rightarrow p} \right)$
$\left( {p \wedge q} \right) \Rightarrow \left( {q \vee p} \right)$
The Boolean Expression $\left( {p\;\wedge \sim q} \right)\;\;\vee \;q\;\;\vee \left( { \sim p\wedge q} \right)$ is equivalent to:
The statement $(p \wedge(\sim q) \vee((\sim p) \wedge q) \vee((\sim p) \wedge(\sim q))$ is equivalent to
Let $p$ and $q$ be any two logical statements and $r:p \to \left( { \sim p \vee q} \right)$. If $r$ has a truth value $F$, then the truth values of $p$ and $q$ are respectively
If $p \to ( \sim p\,\, \vee \, \sim q)$ is false, then the truth values of $p$ and $q$ are respectively .
Which of the following is not a statement